FONCTIONS AFFINES et LINEAIRES, pourcentages

Fonctions affines et linéaires

Définition

Soit p et q deux nombres.

Une fonction est dite <u>linéaire</u> si elle peut se mettre sous la forme $f(x) = p \times x$

Une fonction est dite <u>affine</u> si elle peut se mettre sous la forme $f(x) = p \times x + q$

Exemples

Fonction	Linéaire ?	Affine ?	
f(x) = 3x	Oui	Oui car $3x = 3x + 0$	
g(x) = -6x	Oui	Oui car $-6x = -6x + 0$	
h(x) = 5x + 3	Non	Oui	
i(x) = 7	Non	Oui car $7 = 0x + 7$	
$j(x) = \cos(x)$	Non	Non	
$k(x) = x^2$	Non	Non	

Propriété admise

Une situation de proportionnalité de coefficient p

- a une représentation graphique qui est une droite qui passe par l'origine du repère,
- correspond à la fonction linéaire f(x) = p x.

Soit f(x) = p x + q une fonction affine.

Sa représentation graphique est une droite.

Exemple

Gabriel souhaite acheter des fraises pour faire de la confiture. Sur le marché, il a trouvé des fraises de France à 2,5€ le kilogramme.

Le prix des fraises est proportionnel à la masse de fraises.

Le coefficient de proportionnalité est 2,5.

On appelle x la masse de fraises en kilogrammes.

Cela correspond à la fonction linéaire f(x) = 2.5 x.

Marine est plus courageuse. Elle a trouvé un producteur qui lui offre de ramasser ses fraises pour 1,5€ le kilogramme après paiement d'une redevance forfaitaire de 20€.

Le prix des fraises chez ce producteur est donné par la fonction affine g(x) = 1.5 x + 20.

Comment tracer la représentation graphique d'une fonction linéaire ou affine ?

Comme leurs représentations graphiques sont des droites, il suffit de placer 2 points.

Afin de vérifier, il est intéressant d'en placer 3.

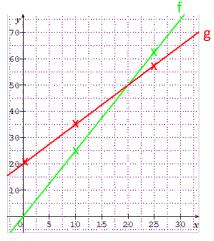
On construit donc un tableau de valeur avec 3 points.

Exemple des fraises

$$f(x) = 2.5 x$$

$$g(x) = 1.5 x + 20$$

х	0	10	25
f (<i>x</i>)	0	25	62,5
g (<i>x</i>)	20	35	57,5



Comment déterminer les antécédents d'un nombre par une fonction affine ?

On cherche les antécédents de a par la fonction affine f(x) = p x + q

Il suffit de résoudre l'équation p x + q = a

Exemple des fraises

On cherche combien Marine peut acheter de fraises avec 38€.

On cherche les antécédents de 38 donc les nombres x tels que g(x) = 38 donc 1,5 x + 20 = 38

$$1,5 x + 20 = 38$$

 $1,5 x = 18$

$$x = 12$$

L'antécédent de 38 est 12.

On interprète ce résultats en disant que Marie peut donc acheter 12kg de fraises.

Propriété

Soit f(x) = p x + q une fonction affine.

La représentation graphique de f passe par le point de coordonnées (0; q).

Le nombre q est appelé ordonnée à l'origine.

Si x augmente de 1 alors f(x) augmente de p.

Le nombre p est appelé coefficient directeur

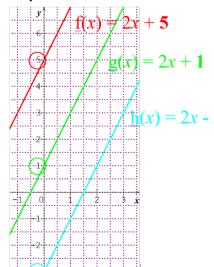
Démonstration

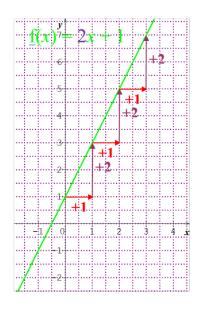
Si x = 0 alors $f(x) = f(0) = p \times 0 + q = q$, donc si x = 0 alors la représentation graphique de f passe par le point de coordonnées (0; q).

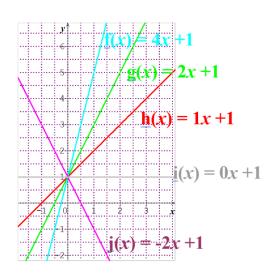
$$f(x + 1) = p(x + 1) + q = px + p + q = px + q + p = f(x) + p$$

Donc si x augmente de 1 alors f(x) augmente de p.

Exemples







Remarque

Deux fonctions qui ont le même coefficient directeur ont des représentations graphiques qui sont parallèles.

Propriété

Soit f(x) = p x + q une fonction affine.

Soit x_1 et x_2 deux nombres et $f(x_1)$ et $f(x_2)$ leurs images.

$$p = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Démonstration

$$f(x_1) = p \ x_1 + q \qquad f(x_2) = p \ x_2 + q$$

$$f(x_2) - f(x_1) = p \ x_2 + q - (p \ x_1 + q)$$

$$f(x_2) - f(x_1) = p \ x_2 + q - p \ x_1 - q$$

$$f(x_2) - f(x_1) = p \ x_2 - p \ x_1$$

$$f(x_2) - f(x_1) = p \ (x_2 - x_1)$$

$$\frac{f(x_2) - f(x_1)}{f(x_2) - f(x_1)} = p$$

Exemple 1

Soit f(x) = p x + q une fonction affine tel que f(2) = 5 et f(6) = 21 leurs images.

Trouver l'expression algébrique de f.

Comme f est une fonction affine, on peut utiliser la formule $p = \frac{f(x_2) - f(x_1)}{x_2 - x_4}$ avec $x_1 = 2$, $f(x_1) = 5$, $x_2 = 6$ et $f(x_2) = 21$.

On a
$$p = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(6) - f(2)}{6 - 2} = \frac{21 - 5}{6 - 2} = \frac{16}{4} = 4$$

Donc f(x) = 4x + q

Dans l'énoncé On remplace x par 2 dans la formule f(x) = 4x + q

On a f(2) = 5 et $f(2) = 4 \times 2 + q$

donc
$$5 = 4 \times 2 + q$$

donc
$$5 = 8 + q$$

$$donc -3 = q$$

donc
$$f(x) = 4x - 3$$

Exemple 2

Soit A(4; 7) et B(6; 11) deux points.

Trouver l'expression algébrique de la fonction affine f dont la représentation graphique passe par les points A et B.

Les points C et D appartiennent-ils à la droite (AB)?

Soit f(x) = px + q la fonction affine dont la représentation graphique passe par les points A et B.

On a x_1 = 4 et f(x_1) = 7 et x_2 = 6 et f(x_2) = 11

Comme f est une fonction affine, on peut utiliser la formule $p = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Donc
$$p = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(6) - f(4)}{6 - 4} = \frac{11 - 7}{6 - 4} = \frac{4}{2} = \frac{2}{2}$$

Donc
$$f(x) = 2x + q$$
.

On a
$$f(4) = 7$$
 et $f(4) = 2 \times 4 + q$

donc
$$7 = 2 \times 4 + q$$

donc
$$7 = 8 + q$$

$$donc -1 = q$$

$$donc -1 = q$$

$$donc f(x) = 2x - 1$$

$$f(5) = 2 \times 5 - 1 = 9 \text{ donc } C \in (AB)$$

$$f(8) = 2 \times 8 - 1 = 15 \neq 17 \text{ donc } D \notin (AB)$$

Soit M (x; y) un point sur cette droite.

Les coordonnées de ce point vérifient l'équation y = 2x - 1; on dit que y = 2x - 1 est l'équation de la droite (AB).

Pourcentages

Rappel

Prendre une fraction d'une quantité, c'est multiplier la fraction par cette quantité.

Le mot français « de » se traduit en mathématiques par une multiplication.

Exemple

Prendre $\frac{3}{5}$ de 120€, c'est prendre $\frac{3}{5} \times 120 = 72$ €.

Prendre 12% de 45€, c'est prendre $\frac{12}{100}$ de 45€, ce qui revient à prendre $\frac{12}{100} \times 45 = 5,40$ €.

Comment calculer le produit d'une fraction par une quantité ?

$$\frac{a}{b} \times c = (a \div b) \times c$$

$$\frac{a}{b} \times c = (a \times c) \div b$$

$$\frac{a}{b} \times c = (c \div b) \times a$$

Exemples

$$\frac{10}{5} \times 7 = (10 \div 5) \times 7$$

$$\frac{5}{3} \times 6 = (5 \times 6) \div 3$$
$$= 30 \div 3 = 10$$

$$\frac{7}{5} \times 15 = (15 \div 5) \times 7$$

= 3 \times 7 = 21

Propriété

Ajouter p% à une quantité revient à la multiplier par $\left(1 + \frac{p}{100}\right)$. Soustraire p% à une quantité revient à la multiplier par $\left(1 - \frac{p}{100}\right)$.

Démonstration

Soit Q la quantité.

$$p\%$$
 de Q c'est $\frac{p}{100} \times Q$

Si on ajoute
$$p\%$$
 à Q , on trouve $Q + \frac{p}{100} \times Q = \left(1 + \frac{p}{100}\right) \times Q$.

Si on soustrait
$$p\%$$
 à Q on trouve $Q - \frac{p}{100} \times Q = \left(1 - \frac{p}{100}\right) \times Q$.

Exemple 1

Paule va en courses. Ce sont les soldes et les prix sont soldés à -15%. Quel sera le prix soldé d'un gilet dont le prix normal est 74€?

Calculons le prix soldé.

$$74 \times \left(1 - \frac{15}{100}\right) = 74 \times 0.85 = 62.90$$

Le prix soldé est 62,90€.

Exemple 2

Le taux de TVA est de 33,3%.

- a. Le prix HT est de 126 €. Quel est le prix TTC?
- b. Le prix TTC est de 150 €. Quel est le prix HT?

Pour passer du prix HT au prix TTC, on multiplie par $1+\frac{33,3}{100}=1,333\,$ donc pour passer du prix TTC au prix HT, on divise par 1,333

a. Calculons le prix TTC.

$$126 \times 1,333 \approx 167,96$$
 Le prix TTC est d'environ $167,96 €$.

b. Calculons le prix HT.

