ARITHMETIQUE

Exemple

Les diviseurs de 45 sont : 1, 3, 5, 9, 15 et 45.

Définition

Un diviseur commun à deux nombres entiers est un nombre entier qui divise chacun d'eux.

Exemples

- 2 est un diviseur commun à 6 et à 10
- Les diviseurs de 12 sont : 1; 2; 3; 4; 6 et 12.

Les diviseurs de 18 sont : 1; 2; 3; 6; 9 et 18.

Donc les diviseurs communs à 12 et 18 sont 1; 2; 3 et 6.

Définition

Le plus grand des nombres parmi les diviseurs communs à plusieurs nombres entiers est appelé le plus grand diviseur commun, noté PGCD.

Exemple

Le PGCD de 12 et 18 est 6. On note : PGCD(12;18) = 6.

Comment trouver le PGCD de deux entiers ? (Algorithme d'Euclide)

Exemple

Calculons le PGCD de 180 et 170.

Le plus grand nombre Le plus petit nombre

Dividende	Diviseur/	Reste
180 🕨	170	10 🔨 Le reste de la division
170 🗡	10 🖊	0 👗

Donc PGCD (180; 170) = 10.

Comment effectuer une division euclidienne à la calculatrice ?

On veut connaître le reste de la division euclidienne de 1254 par 46.

CASIO FX92	TI COLLEGE PLUS				
1254 F 46 EXE	1254 SECONDE ÷ 46 Entrer				

On obtient: Quotient = 27 et Reste = 12

Exemples de calculs de PGCD

Calculons le PGCD de 307 et 315.

Dividende	Diviseur	Reste
315	307	8
307	8	3
8	3	2
3	2	1
2	1	0

Calculons le PG	CD de 125	4 et 1300.
Dividende	Divisour	Posto

Dividende	Diviseur	Reste
1300	1254	46
1254	46	12
46	12	10
12	10	2
10	2	0

Donc le PGCD de 307 et 315 est 1. Donc le PGCD de 1254 et 1300 est 2.

Calculons le PGCD de 1254 et 2. Dividende Diviseur Reste 1254

Donc le PGCD de 1254 et 2 est 2.

Définition

Deux nombres entiers sont dits premiers entre eux si leur PGCD vaut 1.

Définition

Une fraction est dite *irréductible* si son numérateur et son dénominateur sont premiers entre eux (donc si leur PGCD vaut 1).

Exemples

- Comme PGCD (233; 377) = 1 alors 233 et 377 sont premiers alors $\frac{233}{377}$ est irréductible.
- Comme PGCD (42; 75) = 3 alors 42 et 75 ne sont pas premiers entre eux alors $\frac{75}{42}$ est réductible (on peut la simplifier).

Comment rendre une fraction irréductible ?

Soit la fraction $\frac{a}{b}$ que l'on veut rendre irréductible.

Si PGCD (a; b) = 1 alors
$$\frac{a}{b}$$
 est irréductible.

Si PGCD (a ; b) \neq 1 alors on divise le numérateur et le dénominateur de la fraction par ce PGCD et on obtient une fraction irréductible.

Exemples

- $\frac{180}{170} = \frac{18}{17}$ est irréductible car on a divisé le numérateur et le dénominateur de la fraction par leur PGCD, qui est ici 10.
- $\frac{180 \div 10}{170 \div 10} = \frac{18}{17}$

Propriété - admise

Les diviseurs communs à deux entiers sont les diviseurs de leur PGCD.

Exemples

- Comme PGCD (1000; 750) = 250 alors les diviseurs communs à 1000 et 750 sont les diviseurs de 250, ce sont donc 1; 2; 5; 10; 25; 50; 125; 250.
- Comme PGCD (233; 373) = 1 alors 233 et 373 n'ont que 1 comme diviseur commun.

Exemple 1 de problème avec le PGCD

Dans la scierie de Paul, il y a des planches de 250 cm et 300 cm. Afin de simplifier ses ventes, Paul souhaite vendre des planches ayant toutes la même longueur, en recoupant les planches qu'il a dans son stock (sans chute). Les dimensions des nouvelles planches seront des entiers.

Quelle peut être la taille maximale de ces planches ?

Comme les planches doivent avoir toutes la même longueur, la longueur d'une planche doit être un diviseur commun à 250 cm et 300 cm.

Comme on veut des planches les plus grandes possibles, la longueur d'une planche sera le PGCD de 250 cm et 300 cm. Calculons le PGCD de 250 et 300

Dividende	Diviseur	Reste		
300	250	50		
250	50	0		

Donc PGCD (250; 300) = 50 donc la taille maximale d'une planche est de 50 cm.

Exemple 2 de problème avec le PGCD

Nelson vient de restaurer une vieille maison et il souhaite carreler sa cuisine. Cette dernière est une pièce rectangulaire de 4,2m par 5,4m. Il souhaite poser des carreaux identiques sans faire aucune découpe.

Dans le magasin, les carreaux disponibles ont tous des dimensions entières en centimètres et sont tous de forme carrée.

Quelle peut être la taille des carreaux et combien doit-il en acheter?

Comme les carreaux sont des carrés, ils ont la même longueur et la même largeur, donc le côté d'un carreau doit diviser la longueur et la largeur de la cuisine. Le côté d'un carreau est donc un diviseur commun à 420 cm et 540 cm. Calculons le PGCD de 420 et 540

Dividende	Diviseur	Reste
540	420	120
420	120	60
120	60	0

Donc PGCD (420; 540) = 60 donc la taille maximale d'un carreau est 60 cm.

Les tailles possibles pour les carreaux sont les diviseurs de 60, soit : 1 ; 2 ; 3 ; 4 ; 5 ; 6; 10 ; 12 ; 15 ; 20 ; 30 ; 60.

Voici donc les solutions possibles :

Côté d'un carreau	1 cm	2 cm	3 cm	4 cm	5 cm	6 cm	10 cm	12 cm	15 cm	20 cm	30 cm	60 cm
Nombre de carreaux	226800	56700	25200	14175	9072	6300	2268	1575	1008	567	252	63

Comment déterminer ce que l'on trouve lorsque l'on a un diviseur commun ou le PGCD ?

Lorsqu'il s'agit d'un mélange, le PGCD est le nombre de paquets.

Lorsqu'il ne s'agit pas d'un mélange, le PGCD est le nombre d'objets dans un paquet.

Exemple

	•	Jacques dispose de 144 billes et 40 s chaque copain ait :	oldats de plo	mb. II veu	ıt tout donner à ses copains de telle sorte q	jue	
	Enoncés	le même nombre d'objets de chaque sorte. Combien a-t-il de copains au maximum et que recevront-ils ?			le même nombre d'objets : soit des billes, soit des soldats. Que recevra au maximum chaque personne et combien a-t-il de copains ?		
	Pourquoi un diviseur commun ?	Comme il veut utiliser toutes les bill soldats de plomb et comme chacu même chose, alors le nombre de co diviseur commun à 144 et 40.	un recevra la	soldats nombr	soldats de plomb et comme chacun recevra le même		
	Pourquoi le plus grand ?	Comme il veut partager en un maximum de copains, alors le nombre de copains est le PGCD de 144 et 40.					
ses	Calcul du PGCD	Je calcule le PGCD de 144 et 40.					
Réponses			Dividende	Diviseur	Reste		
8			144	40	24		
	np In		40	24	16		
	Calc		24	16	8		
			16	8	0		
		Donc PGCD(144 ; 40) = 8.					
	e e	Il a 8 copains et chacun aura 144÷8 = 18 billes			Chacun recevra 8 objets.		
	Phrase réponse	et 40÷8 = 5 soldats.			Il y aura $144 \div 8 = 18$ copains qui auront 8 billes et $40 \div 8 = 5$ copains qui auront 8 soldats.		

CASIO FX92	TI COLLEGE PLUS			
ALPHA CALC 18 SHIFT 3 12) EXE	maths 1 18 2nde , 12 entrer			

	TABLEUR : Méthode d'Euclide								
	Α	В	С						
1	Dividende	Diviseur	Reste						
2	18	14	= MOD(A2; B2)						
3	= B2	= C2	= MOD(A3; B3)						
4	= B3	= C3	= MOD(A4 ; B4)						

PYTHON: Méthode d'Euclide

def pgcd(a,b):

"""pgcd(a,b): calcul du 'Plus Grand Commun Diviseur' entre les 2 nombres entiers a et b"""

while b!=0:

r=a%b #on calcule le reste de la division de a par b

a,b=b,r #on recommence en "glissant" les nombres

return a

def pgcd(a,b):

if b==0:

return a

else:

r=a%b

return pgcd(b,r)

def pgcd(a,b):

if b==0:

return a

else:

return pgcd(b, a%b)

Exemple d'utilisation:

pgcd(56,42) # => affiche 14

